Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Chemosphere ; 356: 141932, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593955

RESUMO

The presence of heavy metals in water pose a serious threat to both public and environmental health. However, the advances in the application of low cost biochar based adsorbent synthesize from various feedstocks plays an effective role in the of removal heavy metals from water. This study implies the introduction of novel method of converting food waste (FW) to biochar through pyrolysis, examine its physiochemical characteristics, and investigate its adsorption potential for the removal of heavy metals from water. The results revealed that biochar yield decreased from 18.4 % to 14.31 % with increase in pyrolysis temperature from 350 to 550 °C. Likewise, increase in the pyrolysis temperature also resulted in the increase in the ash content from 39.87 % to 42.05 % thus transforming the biochar into alkaline nature (pH 10.17). The structural and chemical compositions of biochar produced at various temperatures (350, 450, and 550 °C) showed a wide range of mineralogical composition, and changes in the concentration of surface functional groups. Similarly, the adsorption potential showed that all the produced biochar effectively removed the selected heavy metals from wastewater. However a slightly high removal capacity was observed for biochar produced at 550 °C that was credited to the alkaline nature, negatively charged biochar active sites due to O-containing functional groups and swelling behavior. The results also showed that the maximum adsorption was recorded at pH 8 at adsorbent dose of 2.5 g L-1 with the contact time of 120 min. To express the adsorption equilibrium, the results were subjected to Langmuir and Freundlich isotherms and correlation coefficient implies that the adsorption process follows the Freundlich adsorption isotherm. The findings of this study suggest the suitability of the novel FW derived biochar as an effective and low cost adsorbent for the removal of heavy metals form wastewater.

2.
J Immunol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629913

RESUMO

Recently, we reported that preexposure of B cells to IL-4 induced an alternate, signalosome-independent BCR signaling pathway leading to protein kinase C (PKC)δ phosphorylation (pTyr311), which occurs in the membrane compartment. This is considered to represent a form of receptor crosstalk and signal integration. Unlike the classical BCR signaling pathway, Lyn kinase is indispensable for BCR-induced downstream events in the alternate pathway. Our previous report that alternate BCR signaling leading to ERK phosphorylation is triggered by LPS and PAM3CSK4 (much like IL-4) raises the possibility that other signaling outcomes such as PKCδ phosphorylation might be similarly affected. To explore the range of mediators capable of producing an alternate pathway for BCR signaling, we examined PKCδ translocation and phosphorylation in LPS- and PAM3CSK4-treated B cells stimulated by anti-Ig. We found that LPS and PAM3CSK4 alter the signaling pathway used by the BCR to produce PKCδ phosphorylation. As with IL-4, elements of the signalosome are not needed for PKCδ phosphorylation when BCR triggering occurs after LPS and PAM3CSK4. However, with LPS and PAM3CSK4, anti-Ig-induced phosphorylation of PKCδ takes place in the cytosol, in contrast to the IL-4-induced alternate pathway, wherein PKCδ phosphorylation occurs in the membrane. Furthermore, the BCR signaling pathway induced by LPS and PAM3CSK4 differs from that induced by IL-4 by not requiring Lyn. Thus, an alternate, signalosome-independent BCR signaling pathway for PKCδ phosphorylation is induced by TLR agonists but differs in important ways from the alternate pathway induced by IL-4.

3.
iScience ; 27(4): 109576, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638836

RESUMO

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

5.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355578

RESUMO

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo
6.
RSC Adv ; 14(10): 7022-7030, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38414991

RESUMO

Uric acid (UA) is a significant indicator of human health because it is linked to several diseases, including renal failure, kidney stones, arthritis, and gout. Uric acid buildup in the joints is the source of chronic and painful diseases. When UA is present in large quantities, it causes tissue injury in the joints that are afflicted. In this research, silver oxide-doped activated carbon nanoparticles were synthesized and then functionalized with an ionic liquid. The synthesized nanomaterial assembly was employed as a colorimetric sensing platform for uric acid. Activated carbon offers a large internal surface area that acts as a good carrier for catalytic reactions. A salt-melting approach was used to synthesize the silver oxide-doped activated carbon nanocomposite. The synthesis was confirmed through various techniques, such as UV-vis spectrophotometer, FTIR, XRD, SEM, and EDX. The colorimetric change from blue-green to colorless was observed with the naked eye and confirmed by UV-vis spectroscopy. To obtain the best colorimetric change, several parameters, such as pH, capped NP loading, TMB concentration, hydrogen peroxide concentration, and time, were optimized. The optimized experimental conditions for the proposed sensor were pH 4 with 35 µL of NPs, a 40 mM TMB concentration, and a 4 minutes incubation time. The sensor linear range is 0.001-0.36 µM, with an R2 value of 0.999. The suggested sensor limits of detection and quantification are 0.207 and 0.69 nM, respectively. Potential interferers, such as ethanol, methanol, urea, Ca2+, K+, and dopamine, did not affect the detection of uric acid.

7.
Front Bioeng Biotechnol ; 12: 1338920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390362

RESUMO

Hydrogen peroxide (H2O2) is one of the main byproducts of most enzymatic reactions, and its detection is very important in disease conditions. Due to its essential role in healthcare, the food industry, and environmental research, accurate H2O2 determination is a prerequisite. In the present work, Morus nigra sawdust deposited zinc oxide (ZnO) nanoparticles (NPs) were synthesized by the use of Trigonella foenum extract via a hydrothermal process. The synthesized platform was characterized by various techniques, including UV-Vis, FTIR, XRD, SEM, EDX, etc. FTIR confirmed the presence of a Zn‒O characteristic peak, and XRD showed the hexagonal phase of ZnO NPs with a 35 nm particle size. The EDX analysis confirmed the presence of Zn and O. SEM images showed that the as-prepared nanoparticles are distributed uniformly on the surface of sawdust. The proposed platform (acetic acid-capped ZnO NPs deposited sawdust) functions as a mimic enzyme for the detection of H2O2 in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) colorimetrically. To get the best results, many key parameters, such as the amount of sawdust-deposited nanoparticles, TMB concentration, pH, and incubation time were optimized. With a linear range of 0.001-0.360 µM and an R2 value of 0.999, the proposed biosensor's 0.81 nM limit of quantification (LOQ) and 0.24 nM limit of detection (LOD) were predicted, respectively. The best response for the proposed biosensor was observed at pH 7, room temperature, and 5 min of incubation time. The acetic acid-capped sawdust deposited ZnO NPs biosensor was also used to detect H2O2 in blood serum samples of diabetic patients and suggest a suitable candidate for in vitro diagnostics and commercial purposes.

8.
Heliyon ; 10(4): e25814, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375246

RESUMO

Salvia (Lamiaceae family) is used as a brain tonic to improve cognitive function. The species including S. plebeia and S. moorcroftiana are locally used to cure hepatitis, cough, tumours, hemorrhoids, diarrhoea, common cold, flu, and asthma. To the best of authors' knowledge, no previous study has been conducted on synthesis of S. plebeia and S. moorcroftiana silver nanoparticles (SPAgNPs and SMAgNPs). The study was aimed to synthesize AgNPs from the subject species aqueous and ethanol extracts, and assess catalytic potential in degradation of standard and extracted (from yums, candies, and snacks) dyes, nitrophenols, and antibiotics. The study also aimed at AgNPs as probe in sensing metalloids and heavy metal ions including Pb2+, Cu2+, Fe3+, Ni2+, and Zn2+. From the results, it was found that Salvia aqueous extract afforded stable AgNPs in 1:9 and 1:15 (quantity of aqueous extract and silver nitrate solution concentration) whereas ethanol extract yielded AgNPs in 1:10 (quantity of ethanol extract and silver nitrate solution concentration) reacted in sunlight. The size of SPAgNPs and SMAgNPs determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were 21.7 nm and 19.9 nm, with spherical, cylindrical, and deep hollow morphology. The synthesized AgNPs demonstrated significant potential as catalyst in dyes; Congo red (85 %), methylene blue (75 %), Rhodamine B (<50 %), nitrophenols; ortho-nitrophenol (95-98 %) and para-nitrophenol (95-98 %), dyes extracted from food samples including yums, candies, and snacks. The antibiotics (amoxicillin, doxycycline, levofloxacin) degraded up to 80 %-95 % degradation. Furthermore, the synthesized AgNPs as probe in sensing of Pb2+, Cu2+, and Fe3+ in Kabul river water, due to agglomeration, caused a significant decrease and bathochromic shift of SPR band (430 nm) when analyzed after 30 min. The Pb2+ ions was comparatively more agglomerated and chelated. Thus, the practical applicability of AgNPs in Pb2+ sensing was significant. Based on the results of this research study, the synthesized AgNPs could provide promising efficiency in wastewater treatment containing organic dyes, antibiotics, and heavy metals.

9.
Plant Physiol Biochem ; 206: 108126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147709

RESUMO

Heavy metal cadmium (Cd) hinders plants' growth and productivity by causing different morphological and physiological changes. Nanoparticles (NPs) are promising for raising plant yield and reducing Cd toxicity. Nonetheless, the fundamental mechanism of nanoparticle-interfered Cd toxicity in Brassica parachineses L. remains unknown. A novel ZnO nanoparticle (ZnO-NPs) was synthesized using a microalgae strain (Chlorella pyrenoidosa) through a green process and characterized by different standard parameters through TEM, EDX, and XRD. This study examines the effect of different concentrations of ZnO-NPs (50 and 100 mgL-1) in B. parachineses L. under Cd stress through ultra-high-performance liquid chromatography/high-resolution mass spectrometry-based untargeted metabolomics profiling. In the presence of Cd toxicity, foliar spraying with ZnO-NPs raised Cu, Fe, Zn, and Mg levels in the roots and/or leaves, improved seedling development, as demonstrated by increased plant height, root length, and shoot and root fresh weight. Furthermore, the ZnO-NPs significantly enhanced the photosynthetic pigments and changed the antioxidant activities of the Cd-treated plants. Based on a metabolomics analysis, 481 untargeted metabolites were accumulated in leaves under normal and Cd-stressed conditions. These metabolites were highly enriched in producing organic acids, amino acids, glycosides, flavonoids, nucleic acids, and vitamin biosynthesis. Surprisingly, ZnO-NPs restored approximately 60% of Cd stress metabolites to normal leaf levels. Our findings suggest that green synthesized ZnO-NPs can balance ions' absorption, modulate the antioxidant activities, and restore more metabolites associated with plant growth to their normal levels under Cd stress. It can be applied as a plant growth regulator to alleviate heavy metal toxicity and improve crop yield in heavy metal-contaminated regions.


Assuntos
Chlorella , Metais Pesados , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Cádmio/análise , Antioxidantes , Chlorella/metabolismo , Nanopartículas/química , Metais Pesados/toxicidade , Poluentes do Solo/metabolismo
10.
ACS Omega ; 8(47): 44931-44941, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046308

RESUMO

Ascorbic acid is a vital biomolecule for human beings. When the body's level of ascorbic acid is abnormal, it can lead to a number of illnesses. Its appropriate concentration is necessary for the oxidation of prostaglandins and cyclic adenosine monophosphate, the production of dopamine, norepinephrine, epinephrine, and carnitine, and the expansion and durability of the collagen triple helix in humans. In the present work, silver nanoparticle synthesis was performed through a paracetamol-mediated approach. Different characterization techniques, such as X-ray diffractometry (XRD), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), were used to confirm the prepared nanoparticles. Subsequently, the prepared Ag NPs functionalized with an ionic liquid were used as a sensing platform for ascorbic acid in blood serum samples. To achieve the best possible results, the proposed biosensor was optimized with different parameters such as TMB concentration, time, amount of capped nanoparticles (NPs), and pH. The proposed biosensor offers a sensitive and straightforward method for ascorbic acid with a linear range from 2 × 10-9 to 3.22 × 10-7 M, an LOD of 1.3 × 10-8 M, an LOQ of 4.3 × 10-8 M, and an R2 of 0.9996, Moreover, applications of the proposed biosensor were successfully used for the detection of ascorbic acid in samples of human plasma, suggesting that Ag NPs with high peroxidase-like activity, high stability, and facile synthesis exhibited promising applications in biomedical fields.

12.
Front Biosci (Landmark Ed) ; 28(10): 241, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37919081

RESUMO

BACKGROUND: Chickpea is one of the most important leguminous crops and its productivity is significantly affected by salinity stress. The use of ecofriendly, salt-tolerant, plant growth-promoting rhizobacteria (PGPR) as a bioinoculant can be very effective in mitigating salinity stress in crop plants. In the present study, we explored, characterized, and evaluated a potential PGPR isolate for improving chickpea growth under salt stress. METHODS: A potential PGPR was isolated from rhizospheric soils of chickpea plants grown in the salt-affected area of eastern Uttar Pradesh, India. The isolate was screened for salt tolerance and characterized for its metabolic potential and different plant growth-promoting attributes. Further, the potential of the isolate to promote chickpea growth under different salt concentrations was determined by a greenhouse experiment. RESULTS: A rhizobacteria isolate, CM94, which could tolerate a NaCl concentration of up to 8% was selected for this study. Based on the BIOLOG carbon source utilization, isolate CM94 was metabolically versatile and able to produce multiple plant growth-promoting attributes, such as indole acetic acid, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore, hydrogen cyanide (HCN), and ammonia as well as solubilized phosphate. A polyphasic approach involving the analysis of fatty acid methyl ester (FAME) and 16S rRNA gene sequencing confirmed the identity of the isolate as Enterobacter sp. The results of greenhouse experiments revealed that isolate CM94 inoculation significantly enhanced the shoot length, root length, and fresh and dry weight of chickpea plants, under variable salinity stress. In addition, inoculation improved the chlorophyll, proline, sugar, and protein content in the tissues of the plant, while lowering lipid peroxidation. Furthermore, isolate CM94 reduced oxidative stress by enhancing the enzymatic activities of superoxide dismutase, catalase, and peroxidase compared to in the respective uninoculated plants. CONCLUSIONS: Overall, the results suggested that using Enterobacter sp. CM94 could significantly mitigate salinity stress and enhance chickpea growth under saline conditions. Such studies will be helpful in identifying efficient microorganisms to alleviate salinity stress, which in turn will help, to devise ecofriendly microbial technologies.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Desenvolvimento Vegetal , Solo , Tolerância ao Sal
14.
Life (Basel) ; 13(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895479

RESUMO

Biochar is an effective soil amendment with capabilities of boosting carbon sequestration and enhancing soil fertility, thus enhancing plant growth and productivity. While numerous studies have documented the positive effects of biochar on improving soil properties, a number of studies have reported conflicting results. Therefore, the current study was conducted to evaluate the impact of Prosopis juliflora biochar (0, 2.5, 5.0, and 7.5 t ha-1) on soil biochemical properties in Coastal Kenya to ascertain biochar's potential for soil fertility improvement. A randomized complete block design was used for setting up the experiment with three replicates, while Casuarina equisetifolia L. was planted as the test crop. Soil sampling for nutrient analysis was conducted quarterly for 12 months to assess nutrient dynamics under different biochar rates in the current study. Compared to soil untreated with Prosopis juliflora biochar, the results showed that there was a significant increase in soil pH by 21% following biochar utilization at the rate of 7.5 t ha-1. Total nitrogen was increased by 32% after the biochar application, whereas the total organic carbon was increased by four folds in comparison to biochar-untreated soil. Available phosphorus was increased by 264% following biochar application in comparison to the control treatment. In addition, the application of biochar resulted in an increment in the soil exchangeable cations (Ca2+, K+, Mg2+) across the assessment periods. Soil cation exchange capacity (CEC), bacteria and fungi were enhanced by 95, 33 and 48%, respectively, following biochar application at 7.5 t ha-1 in comparison to untreated soil. In conclusion, these results strongly suggest improvement of soil biochemical properties following Prosopis juliflora biochar application, thus providing potential for soil fertility improvement in regions such as the one in the study.

15.
Br J Cancer ; 129(10): 1590-1598, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735243

RESUMO

BACKGROUND: Circulating tumour cells (CTCs) are a potential cancer biomarker, but current methods of CTC analysis at single-cell resolution are limited. Here, we describe high-dimensional single-cell mass cytometry proteomic analysis of CTCs in HNSCC. METHODS: Parsortix microfluidic-enriched CTCs from 14 treatment-naïve HNSCC patients were analysed by mass cytometry analysis using 41 antibodies. Immune cell lineage, epithelial-mesenchymal transition (EMT), stemness, proliferation and immune checkpoint expression was assessed alongside phosphorylation status of multiple signalling proteins. Patient-matched tumour gene expression and CTC EMT profiles were compared. Standard bulk CTC RNAseq was performed as a baseline comparator to assess mass cytometry data. RESULTS: CTCs were detected in 13/14 patients with CTC counts of 2-24 CTCs/ml blood. Unsupervised clustering separated CTCs into epithelial, early EMT and advanced EMT groups that differed in signalling pathway activation state. Patient-specific CTC cluster patterns separated into immune checkpoint low and high groups. Patient tumour and CTC EMT profiles differed. Mass cytometry outperformed bulk RNAseq to detect CTCs and characterise cell phenotype. DISCUSSION: We demonstrate mass cytometry allows high-plex proteomic characterisation of CTCs at single-cell resolution and identify common CTC sub-groups with potential for novel biomarker development and immune checkpoint inhibitor treatment stratification.


Assuntos
Neoplasias de Cabeça e Pescoço , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudos de Viabilidade , Proteômica , Biomarcadores Tumorais , Transição Epitelial-Mesenquimal/genética
16.
ACS Omega ; 8(30): 26955-26964, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546603

RESUMO

In the current study, we examined the antioxidant activity and anti-amyloidogenic potential of 6-aminoflavone in an adult mice model of d-galactose-induced aging. Male albino eight-week-old mice were assigned into four groups: 1. the control group (saline-treated), 2. d-galactose-treated mice (100 mg/kg/day, intravenously) for eight weeks, 3. d-galactose-treated mice (100 mg/kg/day, intravenously for eight weeks) and 6-AF-treated mice (30 mg/kg/day, intravenously for the final four weeks), and 4. 6-AF-treated mice (30 mg/kg/day i.p. for four weeks). We conducted many assays for antioxidant enzymes, including lipid peroxidation, catalase, glutathione (GSH), peroxidase (POD), and sulfoxide dismutase (SOD) (LPO). Western blotting was used to assess protein expression while the Morris water maze (MWM) and Y-maze (YM) were used to study behavior. The findings show that 6-AF greatly improved neuronal synapse and memory impairment brought on by d-galactose and it significantly inhibited BACE1 to reduce the amyloidogenic pathway of A (both amyloid ß production and aggregation) by upregulating Nrf2 proteins (validated through molecular docking studies) and suppressing phosphorylated JNK and TNF-α proteins in adult albino mice's brain homogenates. These findings suggest that 6-AF, through the Nrf2/p-JNK/TNF-α signaling pathway, can diminish the oxidative stress caused by d-galactose, as well as the amyloidogenic route of A formation and memory impairment.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37607248

RESUMO

Ochratoxin A (OTA) is a stable toxin produced by fungal strains of Aspergillus and Penicillium. It is commonly found in a variety of food products, including dried fruit, coffee, and spices, raising concerns about their safety. This study was aimed to quantify OTA levels in different food products using HPLC with fluorescence detection. The pre-treatment process was optimised by employing immunoaffinity columns with Tween 20 to effectively remove interfering substances. An analytical method was developed, validated, and applied for OTA analysis in dried fruit, spices, and coffee samples. The validation procedure included determining detection and quantification limits, linearity, precision, and accuracy, as per the criteria specified by AOAC International. The validated method was successfully applied for OTA analysis in the selected food samples. Furthermore, health risk assessment was conducted based on the average intake and body weight of the Korean population. From the results, concentrations of OTA in the samples were found to be very low and therefore concluded not to pose significant threats to consumer health.


Assuntos
Frutas , Especiarias , Café , Medição de Risco
18.
Front Immunol ; 14: 1198665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398676

RESUMO

Introduction: B cells, which have long been thought to be minor players in the development of anti-tumor responses, have been implicated as key players in lung cancer pathogenesis and response to checkpoint blockade in patients with lung cancer. Enrichment of late-stage plasma and memory cells in the tumor microenvironment has been shown in lung cancer, with the plasma cell repertoire existing on a functional spectrum with suppressive phenotypes correlating with outcome. B cell dynamics may be influenced by the inflammatory microenvironment observed in smokers and between LUAD and LUSC. Methods: Here, we show through high-dimensional deep phenotyping using mass cytometry (CyTOF), next generation RNA sequencing and multispectral immunofluorescence imaging (VECTRA Polaris) that key differences exist in the B cell repertoire between tumor and circulation in paired specimens from lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Results: In addition to the current literature, this study provides insight into the in-depth description of the B cell contexture in Non-Small Cell Lung Cancer (NSCLC) with reference to broad clinico-pathological parameters based on our analysis of 56 patients. Our findings reinforce the phenomenon of B-cell trafficking from distant circulatory compartments into the tumour microenvironment (TME). The circulatory repertoire shows a predilection toward plasma and memory phenotypes in LUAD however no major differences exist between LUAD and LUSC at the level of the TME. B cell repertoire, amongst other factors, may be influenced by the inflammatory burden in the TME and circulation, that is, smokers and non-smokers. We have further clearly demonstrated that the plasma cell repertoire exists on a functional spectrum in lung cancer, and that the suppressive regulatory arm of this axis may play a significant role in determining postoperative outcomes as well as following checkpoint blockade. This will require further long-term functional correlation. Conclusion: B and Plasma cell repertoire is very diverse and heterogeneous across different tissue compartments in lung cancer. Smoking status associates with key differences in the immune milieu and the consequent inflammatory microenvironment is likely responsible for the functional and phenotypic spectrum we have seen in the plasma cell and B cell repertoire in this condition.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Plasmócitos/patologia , Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Microambiente Tumoral
20.
Biology (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37372074

RESUMO

The possibility of inducing systemic resistance in roselle against root rot and wilt diseases was investigated using biotic and abiotic inducers. The biotic inducers included three biocontrol agents (i.e., Bacillus subtilis, Gliocladium catenulatum, and Trichoderma asperellum) and two biofertilizers (i.e., microbein and mycorrhizeen), while the abiotic inducers included three chemical materials (i.e., ascorbic acid, potassium silicate, and salicylic acid). In addition, preliminary in vitro studies were conducted to evaluate the inhibitory activity of the tested inducers on the growth of pathogenic fungi. The results show that G. catenulatum was the most efficient biocontrol agent. It reduced the linear growth of Fusarium solani, F. oxysporum, and Macrophomina phaseolina by 76.1, 73.4, and 73.2%, respectively, followed by B. subtilis by 71.4, 69, and 68.3%, respectively. Similarly, potassium silicate was the most effective chemical inducer followed by salicylic acid, each at 2000 ppm. They reduced the linear growth of F. solani by 62.3 and 55.7%; M. phaseolina by 60.7 and 53.1%; and F. oxysporum by 60.3 and 53%, respectively. In the greenhouse, all inducers applied as a seed treatment and/or foliar spray strongly limited the development of root rot and wilt diseases. In this regard, G. catenulatum, at 1 × 109 CFU mL-1, achieved the highest values of disease control, followed by B. subtilis; while T. asperellum, at 1 × 105 CFU mL-1, recorded the lowest values. In addition, the plants treated with potassium silicate followed by salicylic acid, each at 4 g/L, recorded the highest disease control compared to ascorbic acid at 1 g/L, which had the lowest values. The mixture of mycorrhizeen + microbein (at 10 g/kg seeds) was the most effective compared to either of them alone. All treatments, applied alone or in combination in the field, significantly reduced the incidence of diseases. The most effective treatments were a mixture of G. catenulatum (Gc) + Bacillus subtilis (Bs) + Trichoderma asperellum (Ta); a mixture of ascorbic acid (AA) + potassium silicate (PS) + and salicylic (SA); G. catenulatum; potassium silicate; and a mixture of mycorrhizeen + microbein. Rhizolix T had the highest disease-reducing efficacy. In response to the treatments, significant improvements in growth and yield, changes in biochemicals, and increased activities of defense enzymes were achieved. This research points to the activity of some biotic and abiotic inducers that can play a vital role in managing the root rot and wilt of roselle through the induction of systemic plant resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...